精品人妻VA人妻中文字幕,伊人热热久久原色播放www,国产无遮挡在线观看免费AV,欧美视频一区二区三区在线观看,3D动漫精品啪啪一区二区免费
北京理加聯(lián)合科技有限公司

LICA United Technology Limited

服務熱線: 13910499761 010-51292601
企業(yè)郵箱
應用支持 Application Support
News 應用支持

Resonon | 高光譜成像結(jié)合機器學習檢測火炬松幼苗梭形銹病發(fā)病率

日期: 2022-04-19
瀏覽次數(shù): 70

高光譜成像結(jié)合機器學習檢測火炬松幼苗梭形銹病發(fā)病率

高光譜成像結(jié)合機器學習檢測火炬松幼苗梭形銹病發(fā)病率

火炬松是美國南部最重要的森林樹種,它生長迅速、適應性強,可用于建筑木材、膠合板和紙漿等。松梭形銹病是由真菌Cronartium quercuum f.sp. fusiformeCqf)引起的一種影響該物種的常見且具有破壞性的病害。這種真菌通常會感染幼樹的莖,導致被稱為“銹癭”的腫瘤樣生長物產(chǎn)生,可能會造成樹木死亡或產(chǎn)生“銹叢”,從而妨礙樹木生長,降低木材使用價值。種植抗病苗是限制該病害的最有效的措施。溫室中抗病性測試在人工接種幼苗后的目視估計病害發(fā)病率和嚴重程度具有高度主觀性,容易出現(xiàn)人為錯誤,且勞動密集。此外,目視評估只有在病害感染一段時間后,癥狀充分發(fā)展時才能進行。而高光譜成像可同時獲取空間和光譜信息,提供了在不同空間尺度上分析光譜信息的機會,已成功應用于多種植物物種的病害和脅迫檢測。

基于此,在本文中,來自北卡羅來納州立大學和密西西比州立大學的研究團隊提出了一種利用高光譜成像技術篩選火炬松幼苗梭形銹病發(fā)病率的創(chuàng)新方法,具體目標為(1)開發(fā)高光譜圖像處理管道,用于從火炬松幼苗圖像中的特定感興趣區(qū)域(ROI)中提取光譜數(shù)據(jù);(2)基于來自(1)的特定ROI的光譜數(shù)據(jù),評估用于區(qū)分患病和未患病幼苗的SVM分類模型。

高光譜成像結(jié)合機器學習檢測火炬松幼苗梭形銹病發(fā)病率

1 火炬松幼苗高光譜圖像采集的成像裝置。

【高光譜圖像獲取】

線性掃描高光譜成像儀(Pika XC2,Resonon Inc.Bozeman,MT,USA)用于收集4001000 nm范圍內(nèi)的高光譜數(shù)據(jù),光譜分辨率為1.3 nm。高光譜圖像立方體的尺寸為1600×n×462,其中n為創(chuàng)建一個數(shù)據(jù)立方體使用的線掃描數(shù),1600為每條線的像素數(shù)。

獲取高光譜圖像后,通過閾值化歸一化植被指數(shù)(NDVI)圖像從背景中分割出幼苗,并通過使用Faster RCNN模型的目標檢測來實現(xiàn)個體幼苗的描繪。隨后使用DeepLabv3+模型對植物部分進行分割。并使用幾何特征分割冠層像素。從植物片段中提取光譜數(shù)據(jù)后,訓練支持向量機(SVM)分類模型用于患病和非患病植物的分類。

【結(jié)果】

高光譜成像結(jié)合機器學習檢測火炬松幼苗梭形銹病發(fā)病率

2 測試集隨機組圖像的莖像素(紅色)和非莖像素(綠色)。對于每株植物,左圖顯示了地面實況標簽,右圖顯示了DeepLabv3+模型預測結(jié)果。?

1 利用DeepLabv3+對莖葉像素進行分割的像素精度和平均交并比(mIoU)值。

高光譜成像結(jié)合機器學習檢測火炬松幼苗梭形銹病發(fā)病率?

2 不同ROI的分類模型結(jié)果。

高光譜成像結(jié)合機器學習檢測火炬松幼苗梭形銹病發(fā)病率

高光譜成像結(jié)合機器學習檢測火炬松幼苗梭形銹病發(fā)病率

3 左:箱線圖顯示了從不同ROI提取的數(shù)據(jù)中使用SVM判別模型獲得的平衡精度。ST:莖上半部分;S:全莖;SB:莖下半部分;WP:整株植物;C:冠層。右圖:使用莖上半部分光譜數(shù)據(jù)的SVM分類模型的接收器操作特征(ROC)曲線與具有完美和不存在判別能力的模型進行比較。

【小結(jié)】

作者通過研究發(fā)現(xiàn),本文所提出的方法可有效檢測病害發(fā)病率。隨著進一步研究圖像采集和處理方法,以及通過使用自動化表型平臺,火炬松幼苗的高通量表型分析將成為目前在抗性篩選中心所使用方法的一個組成部分。


News / 相關新聞 More
2024 - 12 - 02
森林約占全球土壤碳庫的70%,是調(diào)節(jié)大氣CO2濃度的關鍵因素。濕地作為陸地和水生系統(tǒng)的過渡區(qū),通常地下水位接近地表。全球變暖導致北方低地森林被濕地取代,造成景觀破碎化,并可能改變碳通量。土壤CO2通量占大氣碳的20-38%,其主要來源是土壤呼吸,包括自養(yǎng)和異養(yǎng)呼吸。異養(yǎng)呼吸受溫度、濕度和溶解有機物(DOM)影響。低分子量化合物(LMW)更易降解,促進微生物活動和土壤呼吸。解凍期雨雪事件可將DOM輸送至濕地,影響土壤CO2通量。本研究假設,解凍期森林濕地集水區(qū)的土壤CO2通量受DOM運動的影響,目標是分析CO2通量變化,確定DOM的影響, 并探索微生物在其中的作用。圖們江位于中國、朝鮮和俄羅斯的交界處,最終流入日本海,地處中高緯度地區(qū),范圍為北緯41.99°到44.51°(圖1(a))。布爾哈通河是圖們江的重要支流,其上游流域面積為1560平方公里。該流域以山地...
2024 - 11 - 07
對地表入滲和蒸發(fā)通量的分配,以及準確量化不同空間尺度下土壤與大氣之間的質(zhì)量和能量交換過程,都需要了解土壤的水文性質(zhì)(如土壤水分特征曲線和導水率特征曲線)。土壤水分特征曲線(SWRC)描述了在基質(zhì)勢下土壤水分含量的平衡情況,是重要的水文特性,與土壤孔隙的大小分布和結(jié)構(gòu)密切相關,受土壤結(jié)構(gòu)、質(zhì)地、有機物和粘土礦物等因素的影響。傳統(tǒng)測量SWRC的實驗室方法繁瑣,數(shù)據(jù)往往不完整,且只覆蓋有限的水分含量范圍。近年來,近程和遙感技術得到了廣泛關注,特別是在光學域內(nèi)的土壤反射光譜已被用于獲取土壤礦物學和化學成分、有機物含量、粒度分布及水分含量等信息。這些研究為衛(wèi)星遙感提供了大尺度測繪的基礎。傳統(tǒng)方法主要依賴光譜轉(zhuǎn)移函數(shù),盡管能有效推斷土壤水力特性,但需大量數(shù)據(jù)進行模型校準。本文提出了一種新的實驗室方法,通過水分含量依賴的短波紅外(SWIR)土壤反射光譜直接估計SWRC,利用最近開發(fā)的前向輻射傳輸模型,僅...
2024 - 10 - 29
水資源在糧食生產(chǎn)和生態(tài)修復中的關鍵作用,特別是在頻繁出現(xiàn)的高溫、干旱等極端天氣條件下,威脅糧食生產(chǎn),加速土地退化。研究指出,中國作為人均水資源低于世界平均水平的國家,農(nóng)業(yè)用水已占全國總用水量的60%以上,但整體用水效率較低且區(qū)域差異顯著。尤其在山區(qū)和丘陵地區(qū),土壤侵蝕和厚度減少嚴重影響了蓄水能力,加劇了干旱頻發(fā)和作物減產(chǎn)的風險。為應對這些挑戰(zhàn),本文強調(diào)了通過優(yōu)化農(nóng)業(yè)管理實踐,提高用水效率,以緩解干旱脅迫,維持作物產(chǎn)量的重要性。本次田間試驗在中國科學院鹽亭紫色土農(nóng)業(yè)生態(tài)站進行,該站位于中國四川盆地中北部,海拔400-600m(東經(jīng)105° 27’,北緯 31°16’)(圖 1)。該地區(qū)屬于中亞熱帶季風氣候,平均氣溫 17.3℃。年平均降水量為826mm,蒸發(fā)量為680 mm。降雨分布不均,約70%的年降水發(fā)生在夏秋季,季節(jié)性干旱頻繁,主要發(fā)生在春季和初夏。 圖1...
2024 - 10 - 29
考古學雖然常與發(fā)掘相關,但許多遺址仍需通過地表上的文物和其他特征來進行識別。對這些地表考古記錄的分析不僅可以揭示不同定居時期的信息,還能展示土地的農(nóng)業(yè)、生產(chǎn)或儀式用途,以及景觀中人、物、思想的流動模式。本文介紹了一種利用機載高光譜短波紅外 (SWIR) 圖像的新方法,用于記錄和分析地表考古材料。SWIR 光可以區(qū)分不同類型的巖石、礦物和土壤,地質(zhì)學家經(jīng)常利用這一原理繪制地質(zhì)圖。Resonon Pika IR+高光譜成像儀能夠以優(yōu)于10厘米的空間分辨率收集SWIR圖像,從而識別并表征地表文物。本文探討了在NASA Space Archaeology 資助下進行的實驗,展示了這項技術的潛力和挑戰(zhàn),特別是在成功定位和表征單個文物方面,同時指出了未來發(fā)展的關鍵方向。作者團隊將 Resonon Pika IR+高光譜成像儀安裝在 DJI M600上(圖 1)。還在機身頂部安裝了額外的 GPS 天線桿...
關閉窗口】【打印
Copyright ?2018-2023 北京理加聯(lián)合科技有限公司
犀牛云提供企業(yè)云服務

北京理加聯(lián)合科技有限公司

地址:北京市海淀區(qū)安寧莊東路18號光華創(chuàng)業(yè)園5號樓(生產(chǎn)研發(fā))
          光華創(chuàng)業(yè)園科研樓四層
電話:13910499761 13910499762 010-51292601
傳真:010-82899770-8014
郵箱:info@li-ca.com
郵編:100085

 

地址:深圳市寶安區(qū)創(chuàng)業(yè)二路玖悅雅軒商業(yè)裙樓3層瑞思BEEPLUS 3029室 手機:13910499772

 


 


  • 您的姓名:
  • *
  • 公司名稱:
  • *
  • 地址:
  • *
  • 電話:
  • *
  • 傳真:
  • *
  • 電子郵箱:
  • *
  • 郵政編碼:
  • *
  • 留言主題:
  • *
  • 詳細說明:
  • *
在線留言
關注我們
  • 官方微信
  • 官方手機端
友情鏈接:
X
1

QQ設置

3

SKYPE 設置

4

阿里旺旺設置

等待加載動態(tài)數(shù)據(jù)...

等待加載動態(tài)數(shù)據(jù)...

5

電話號碼管理

  • 010-51292601
6

二維碼管理

等待加載動態(tài)數(shù)據(jù)...

等待加載動態(tài)數(shù)據(jù)...

展開